Уравнения Максвелла обладают несомненной простотой и элегантностью. Однако конкретные расчёты оказываются намного более сложными в реализации. В задачах расчёта нерегулярных интегрально-оптических волноводов применяется несколько ос- новных методов. Авторы предлагают использовать метод адиабатических волноводных мод. Данный метод может быть реализован в фарватере работ Люнеберга. Кроме того, метод имеет прозрачную геометрическую интерпретацию. Как и уравнения Люнеберга, получающиеся в данном методе уравнения соответствуют уравнениям Гамильтона на кокасательном расслоении над конфигурационным пространством. Кроме того, для вычисления траекторий лучей используется простейшая геометризация, когда показатель преломления представляется как метрика некоторого эффективного пространства. Таким образом, фазовая функция вычисляется как действие вдоль траектории. Тонкоплёночная линза Люнеберга является интересным объектом как в общетеоретическом смысле, так и в практическом. Её изучение позволяет в дальнейшем описывать целый класс объектов, но при этом она является важнейшим элементов для построения чисто оптических управляющих устройств. Таким образом, авторы считают метод адиабатических мод наиболее подходящим для исследования такого объекта, как тонкоплёночная обобщённая волноводная линза Люнеберга.