Использование геометризации уравнений Максвелла при расчёте оптических приборов

2017-01-01·
Дмитрий Сергеевич Кулябов
· 0 мин. для прочтения
Аннотация
Развитие физики в XX-м веке было тесно связано с развитием математического аппарата. Общая теория относительности продемонстрировала силу геометрического подхода. К сожалению проникновение этого аппарата в другие области физики происходит достаточно медленно. Например, было несколько попыток внедрения геометрических методов в электродинамику, однако до последнего времени они оставались лишь теоретическими упражнениями. Интерес к геометрическим методам в электродинамике вызван практической необходимостью. Представляется заманчивым следующий алгоритм конструирования электромагнитного прибора. Строятся предполагаемые траектории распространения электромагнитных волн. Затем по этим траекториям вычисляются параметры среды. Также представляет интерес и обратная задача. В работе рассматривается методика расчёта оптических приборов на основе метода геометризации уравнений Максвелла. В основе метода лежит представление материальных уравнений Максвелла в виде эффективной геометрии пространства-времени. Таким образом мы получаем задачу, сходную с некой биметрической теорией гравитации, что позволяет применять хорошо разработанный аппарат дифференциальной геометрии. На основании этого мы можем как исследовать распространение электромагнитного поля по заданным параметрам среды, так и находить параметры среды по заданному закону распространения электромагнитного поля.
Тип публикации
Публикация
Вестник РУДН. Серия «Математика. Информатика. Физика»