Project:machine-Learning

Using NeuralPDE.jl to solve differential equations

daria-m.-belicheva

Using generative artificial intelligence

The use of generative artificial intelligence (GenAI) in scientific publications requires strict guidelines to ensure transparency, credibility, and ethics of research.

dmitry-sergeevich-kulyabov

Statistical and density-based clustering techniques in the context of anomaly detection in network systems: A comparative analysis

In the modern world, the volume of data stored electronically and transmitted over networks continues to grow rapidly. This trend increases the demand for the development of …

aleksandr-sergeevich-baklashov

Surrogate modeling assistant software

Computer modeling is designed to predict the behavior of complex systems by solving the corresponding mathematical equations of the physical process. The simulation requires a huge …

anastasia-vyacheslavovna-demidova

Comparative analysis of machine learning methods by the example of the problem of determining muon decay

The history of using machine learning algorithms to analyze statistical models is quite long. The development of computer technology has given these algorithms a new breath. …

migran-nelsonovich-gevorkyan

Классификация повреждений кожи по данным дермаскопии с использованием методов глубокого обучения

В настоящей работе предложен подход к решению задачи обнаружения злокачественных новообразований кожи, а именно, меланомы, на основе анализа дермоскопических изображений с …

%D0%B5%D0%B2%D0%B3%D0%B5%D0%BD%D0%B8%D0%B8-%D1%8E%D1%80%D1%8C%D0%B5%D0%B2%D0%B8%D1%87-%D1%89%D0%B5%D1%82%D0%B8%D0%BD%D0%B8%D0%BD

Paralinguistic model for emotions recognition with deep neural networks

In this paper the computer paralinguistic model for emotions recognition based on deep neural networks is proposed. The main stages of its construction were studied and relevant …

eugene-yurievich-shchetinin

On improving the accuracy of the classification on imbalanced classes with machine learning

Imbalance of the classes, characterized by a disproportional ratio of observations in each class, is one of the significant problems in machine learning. Class imbalances can be …

eugene-yurievich-shchetinin

Skin cancer classification computer system development with deep learning

Melanoma is a deadly form of skin cancer that is often undiagnosed or misdiagnosed as a benign skin lesion. Its early detection is extremely important, since the life of patients …

anastasiya-vyacheslavovna-demidova

Melanoma Detection Computer System Development with Deep Neural Networks

This paper examines the problem of detecting skin malignancies, in particular, melanoma, from the analysis of dermoscopic images using deep learning methods. For this purpose, a …

eugene-yurievich-shchetinin

Deep Neural Networks for Emotion Recognition

The paper investigates the problem of recognizing human emotions by voice using deep learning methods. Deep convolutional neural networks and recurrent neural networks with …

eugene-yurievich-shchetinin

Structural Approach to the Deep Learning Method

According to the modest opinion of the authors, data science, machine learning, neural networks are extremely relevant areas of science. Around them there was an expectation that …

leonid-antonovich-sevastianov

Программное средство для анализа работы нейронной сети, классифицирующей изображения

Программа применяется для анализа работы нейронной сети, классифицирующей изображения рукописных символов. Программа включает модули, реализующие методы построения нейронной сети, …

%D0%B0%D0%BD%D0%B0%D1%81%D1%82%D0%B0%D1%81%D0%B8%D1%8F-%D0%B2%D1%8F%D1%87%D0%B5%D1%81%D0%BB%D0%B0%D0%B2%D0%BE%D0%B2%D0%BD%D0%B0-%D0%B4%D0%B5%D0%BC%D0%B8%D0%B4%D0%BE%D0%B2%D0%B0

Программная реализация нейронной сети для задачи определения мюонного распада

Программа применяется для определения по имеющимся данным реакции мюонного распада вида $τ$ →µµµ. Программа включает модули, реализующие методы построения нейронной сети, модуль, …

%D0%B0%D0%BD%D0%B0%D1%81%D1%82%D0%B0%D1%81%D0%B8%D1%8F-%D0%B2%D1%8F%D1%87%D0%B5%D1%81%D0%BB%D0%B0%D0%B2%D0%BE%D0%B2%D0%BD%D0%B0-%D0%B4%D0%B5%D0%BC%D0%B8%D0%B4%D0%BE%D0%B2%D0%B0